Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
sort1(nil) -> nil
sort1(cons2(x, y)) -> insert2(x, sort1(y))
insert2(x, nil) -> cons2(x, nil)
insert2(x, cons2(v, w)) -> choose4(x, cons2(v, w), x, v)
choose4(x, cons2(v, w), y, 0) -> cons2(x, cons2(v, w))
choose4(x, cons2(v, w), 0, s1(z)) -> cons2(v, insert2(x, w))
choose4(x, cons2(v, w), s1(y), s1(z)) -> choose4(x, cons2(v, w), y, z)
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
sort1(nil) -> nil
sort1(cons2(x, y)) -> insert2(x, sort1(y))
insert2(x, nil) -> cons2(x, nil)
insert2(x, cons2(v, w)) -> choose4(x, cons2(v, w), x, v)
choose4(x, cons2(v, w), y, 0) -> cons2(x, cons2(v, w))
choose4(x, cons2(v, w), 0, s1(z)) -> cons2(v, insert2(x, w))
choose4(x, cons2(v, w), s1(y), s1(z)) -> choose4(x, cons2(v, w), y, z)
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
sort1(nil) -> nil
sort1(cons2(x, y)) -> insert2(x, sort1(y))
insert2(x, nil) -> cons2(x, nil)
insert2(x, cons2(v, w)) -> choose4(x, cons2(v, w), x, v)
choose4(x, cons2(v, w), y, 0) -> cons2(x, cons2(v, w))
choose4(x, cons2(v, w), 0, s1(z)) -> cons2(v, insert2(x, w))
choose4(x, cons2(v, w), s1(y), s1(z)) -> choose4(x, cons2(v, w), y, z)
The set Q consists of the following terms:
sort1(nil)
sort1(cons2(x0, x1))
insert2(x0, nil)
insert2(x0, cons2(x1, x2))
choose4(x0, cons2(x1, x2), x3, 0)
choose4(x0, cons2(x1, x2), 0, s1(x3))
choose4(x0, cons2(x1, x2), s1(x3), s1(x4))
Q DP problem:
The TRS P consists of the following rules:
SORT1(cons2(x, y)) -> INSERT2(x, sort1(y))
INSERT2(x, cons2(v, w)) -> CHOOSE4(x, cons2(v, w), x, v)
CHOOSE4(x, cons2(v, w), s1(y), s1(z)) -> CHOOSE4(x, cons2(v, w), y, z)
CHOOSE4(x, cons2(v, w), 0, s1(z)) -> INSERT2(x, w)
SORT1(cons2(x, y)) -> SORT1(y)
The TRS R consists of the following rules:
sort1(nil) -> nil
sort1(cons2(x, y)) -> insert2(x, sort1(y))
insert2(x, nil) -> cons2(x, nil)
insert2(x, cons2(v, w)) -> choose4(x, cons2(v, w), x, v)
choose4(x, cons2(v, w), y, 0) -> cons2(x, cons2(v, w))
choose4(x, cons2(v, w), 0, s1(z)) -> cons2(v, insert2(x, w))
choose4(x, cons2(v, w), s1(y), s1(z)) -> choose4(x, cons2(v, w), y, z)
The set Q consists of the following terms:
sort1(nil)
sort1(cons2(x0, x1))
insert2(x0, nil)
insert2(x0, cons2(x1, x2))
choose4(x0, cons2(x1, x2), x3, 0)
choose4(x0, cons2(x1, x2), 0, s1(x3))
choose4(x0, cons2(x1, x2), s1(x3), s1(x4))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
SORT1(cons2(x, y)) -> INSERT2(x, sort1(y))
INSERT2(x, cons2(v, w)) -> CHOOSE4(x, cons2(v, w), x, v)
CHOOSE4(x, cons2(v, w), s1(y), s1(z)) -> CHOOSE4(x, cons2(v, w), y, z)
CHOOSE4(x, cons2(v, w), 0, s1(z)) -> INSERT2(x, w)
SORT1(cons2(x, y)) -> SORT1(y)
The TRS R consists of the following rules:
sort1(nil) -> nil
sort1(cons2(x, y)) -> insert2(x, sort1(y))
insert2(x, nil) -> cons2(x, nil)
insert2(x, cons2(v, w)) -> choose4(x, cons2(v, w), x, v)
choose4(x, cons2(v, w), y, 0) -> cons2(x, cons2(v, w))
choose4(x, cons2(v, w), 0, s1(z)) -> cons2(v, insert2(x, w))
choose4(x, cons2(v, w), s1(y), s1(z)) -> choose4(x, cons2(v, w), y, z)
The set Q consists of the following terms:
sort1(nil)
sort1(cons2(x0, x1))
insert2(x0, nil)
insert2(x0, cons2(x1, x2))
choose4(x0, cons2(x1, x2), x3, 0)
choose4(x0, cons2(x1, x2), 0, s1(x3))
choose4(x0, cons2(x1, x2), s1(x3), s1(x4))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 1 less node.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
INSERT2(x, cons2(v, w)) -> CHOOSE4(x, cons2(v, w), x, v)
CHOOSE4(x, cons2(v, w), s1(y), s1(z)) -> CHOOSE4(x, cons2(v, w), y, z)
CHOOSE4(x, cons2(v, w), 0, s1(z)) -> INSERT2(x, w)
The TRS R consists of the following rules:
sort1(nil) -> nil
sort1(cons2(x, y)) -> insert2(x, sort1(y))
insert2(x, nil) -> cons2(x, nil)
insert2(x, cons2(v, w)) -> choose4(x, cons2(v, w), x, v)
choose4(x, cons2(v, w), y, 0) -> cons2(x, cons2(v, w))
choose4(x, cons2(v, w), 0, s1(z)) -> cons2(v, insert2(x, w))
choose4(x, cons2(v, w), s1(y), s1(z)) -> choose4(x, cons2(v, w), y, z)
The set Q consists of the following terms:
sort1(nil)
sort1(cons2(x0, x1))
insert2(x0, nil)
insert2(x0, cons2(x1, x2))
choose4(x0, cons2(x1, x2), x3, 0)
choose4(x0, cons2(x1, x2), 0, s1(x3))
choose4(x0, cons2(x1, x2), s1(x3), s1(x4))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CHOOSE4(x, cons2(v, w), 0, s1(z)) -> INSERT2(x, w)
Used argument filtering: INSERT2(x1, x2) = x2
cons2(x1, x2) = cons1(x2)
CHOOSE4(x1, x2, x3, x4) = x2
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
INSERT2(x, cons2(v, w)) -> CHOOSE4(x, cons2(v, w), x, v)
CHOOSE4(x, cons2(v, w), s1(y), s1(z)) -> CHOOSE4(x, cons2(v, w), y, z)
The TRS R consists of the following rules:
sort1(nil) -> nil
sort1(cons2(x, y)) -> insert2(x, sort1(y))
insert2(x, nil) -> cons2(x, nil)
insert2(x, cons2(v, w)) -> choose4(x, cons2(v, w), x, v)
choose4(x, cons2(v, w), y, 0) -> cons2(x, cons2(v, w))
choose4(x, cons2(v, w), 0, s1(z)) -> cons2(v, insert2(x, w))
choose4(x, cons2(v, w), s1(y), s1(z)) -> choose4(x, cons2(v, w), y, z)
The set Q consists of the following terms:
sort1(nil)
sort1(cons2(x0, x1))
insert2(x0, nil)
insert2(x0, cons2(x1, x2))
choose4(x0, cons2(x1, x2), x3, 0)
choose4(x0, cons2(x1, x2), 0, s1(x3))
choose4(x0, cons2(x1, x2), s1(x3), s1(x4))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 1 less node.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CHOOSE4(x, cons2(v, w), s1(y), s1(z)) -> CHOOSE4(x, cons2(v, w), y, z)
The TRS R consists of the following rules:
sort1(nil) -> nil
sort1(cons2(x, y)) -> insert2(x, sort1(y))
insert2(x, nil) -> cons2(x, nil)
insert2(x, cons2(v, w)) -> choose4(x, cons2(v, w), x, v)
choose4(x, cons2(v, w), y, 0) -> cons2(x, cons2(v, w))
choose4(x, cons2(v, w), 0, s1(z)) -> cons2(v, insert2(x, w))
choose4(x, cons2(v, w), s1(y), s1(z)) -> choose4(x, cons2(v, w), y, z)
The set Q consists of the following terms:
sort1(nil)
sort1(cons2(x0, x1))
insert2(x0, nil)
insert2(x0, cons2(x1, x2))
choose4(x0, cons2(x1, x2), x3, 0)
choose4(x0, cons2(x1, x2), 0, s1(x3))
choose4(x0, cons2(x1, x2), s1(x3), s1(x4))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CHOOSE4(x, cons2(v, w), s1(y), s1(z)) -> CHOOSE4(x, cons2(v, w), y, z)
Used argument filtering: CHOOSE4(x1, x2, x3, x4) = x4
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
sort1(nil) -> nil
sort1(cons2(x, y)) -> insert2(x, sort1(y))
insert2(x, nil) -> cons2(x, nil)
insert2(x, cons2(v, w)) -> choose4(x, cons2(v, w), x, v)
choose4(x, cons2(v, w), y, 0) -> cons2(x, cons2(v, w))
choose4(x, cons2(v, w), 0, s1(z)) -> cons2(v, insert2(x, w))
choose4(x, cons2(v, w), s1(y), s1(z)) -> choose4(x, cons2(v, w), y, z)
The set Q consists of the following terms:
sort1(nil)
sort1(cons2(x0, x1))
insert2(x0, nil)
insert2(x0, cons2(x1, x2))
choose4(x0, cons2(x1, x2), x3, 0)
choose4(x0, cons2(x1, x2), 0, s1(x3))
choose4(x0, cons2(x1, x2), s1(x3), s1(x4))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
SORT1(cons2(x, y)) -> SORT1(y)
The TRS R consists of the following rules:
sort1(nil) -> nil
sort1(cons2(x, y)) -> insert2(x, sort1(y))
insert2(x, nil) -> cons2(x, nil)
insert2(x, cons2(v, w)) -> choose4(x, cons2(v, w), x, v)
choose4(x, cons2(v, w), y, 0) -> cons2(x, cons2(v, w))
choose4(x, cons2(v, w), 0, s1(z)) -> cons2(v, insert2(x, w))
choose4(x, cons2(v, w), s1(y), s1(z)) -> choose4(x, cons2(v, w), y, z)
The set Q consists of the following terms:
sort1(nil)
sort1(cons2(x0, x1))
insert2(x0, nil)
insert2(x0, cons2(x1, x2))
choose4(x0, cons2(x1, x2), x3, 0)
choose4(x0, cons2(x1, x2), 0, s1(x3))
choose4(x0, cons2(x1, x2), s1(x3), s1(x4))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
SORT1(cons2(x, y)) -> SORT1(y)
Used argument filtering: SORT1(x1) = x1
cons2(x1, x2) = cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
sort1(nil) -> nil
sort1(cons2(x, y)) -> insert2(x, sort1(y))
insert2(x, nil) -> cons2(x, nil)
insert2(x, cons2(v, w)) -> choose4(x, cons2(v, w), x, v)
choose4(x, cons2(v, w), y, 0) -> cons2(x, cons2(v, w))
choose4(x, cons2(v, w), 0, s1(z)) -> cons2(v, insert2(x, w))
choose4(x, cons2(v, w), s1(y), s1(z)) -> choose4(x, cons2(v, w), y, z)
The set Q consists of the following terms:
sort1(nil)
sort1(cons2(x0, x1))
insert2(x0, nil)
insert2(x0, cons2(x1, x2))
choose4(x0, cons2(x1, x2), x3, 0)
choose4(x0, cons2(x1, x2), 0, s1(x3))
choose4(x0, cons2(x1, x2), s1(x3), s1(x4))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.